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Abstract: The increasing demand of mining resources, the more prominent the contradictory 
characteristics of frequent mining and ecological environmental protection, for which how to 
effectively extract large-scale mining points is not only a prerequisite for building a basic database 
of mines, but also a data support for monitoring the ecological environment of mining areas. In this 
paper, based on object-oriented technology and random forest, we use Sentinel-2 as the data source, 
image segmentation to build a multi-dimensional classification feature library of spectrum, 
topography, texture and geometry, and establish a sample database of mining areas in the Yili River 
basin with the assistance of mineral rights data; finally, we implement random forest model 
construction, parameter optimization and classification in Python. The results show that (1) the 
object-oriented technology can weaken the "pretzel effect" to a certain extent, and the scale, shape, 
and tightness factors are set to 100, 0.1, and 0.5 to ensure the integrity of the mine area; (2) the 
optimized random forest parameters NST and MF are 5 and 1000 respectively to meet the 
relationship between model accuracy and efficiency, and the feature (2) The importance assessment 
shows that there is a large correlation between the mine area and the spectrum and topography, and 
only the standard deviation feature has a large correlation among the texture features; (3) There are 
395 mine sites in the Yili River basin, with a total area of 143.220km2, which are concentrated in 
the middle and low elevations and close to the river, spatially reflecting "group", in terms of 
quantity, the mine area is mostly in the range of 0-0.5km2., and the non-metallic mining sites are 
the most abundant, with an average distance of 9364.69m from the river, and the metal mining sites 
are the closest to the river. 

1. Introduction 
The first national comprehensive risk census of natural disasters (2020-2022) in the Ministry of 

Emergency Management proposed to conduct a base inventory of mining areas in the country to 
improve natural disaster prevention and control capabilities by mapping the number, size, and spatial 
location information of mines nationwide and forming a basic database of mines. Mines are 
important energy resources on earth, and mining as an economic activity, while making outstanding 
contributions to socio-economic development, has also become a hot zone of natural environmental 
degradation [1], such as illegal mines, which not only cause serious damage to the environment, but 
also often lead to casualties due to illegal operations [2], so by specifically quantifying the scope and 
period of large-scale mining activities, the establishment of a basic database of mines is essential to 
securing the ecology and environment of the earth as well as the security of social and economic 
properties is of great significance [3]. 

The identification of mining areas is crucial in the establishment of the basic mine database. In the 
current study, there is the use of medium-resolution sensors based on the spectral and textural 
features of the features, using fuzzy clustering to aggregate the mine image elements with similar 
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features within a certain distance in the spatial range, so as to extract the boundary information [4]; 
there is also the use of reflectance datasets to extract NDVI, NBR, NDMI, and combine RED and 
NIR bands, using multivariate normal distribution fitting to find out the extent of mine areas [5]; 
when in densely vegetated areas, Julzarika derived the land expansion of the mine area based on the 
time-series NDVI [6]. In addition, high-resolution images have been used in mine detection, Pagot et 
al [7] used IKONOS images to extract diamond mines based on object-oriented techniques and 
maximum likelihood methods, Demirel et al [8] used IKONOS images to detect mine changes based 
on machine learning techniques, and also scholars [9] combined the role of human vision and Snake 
model to extract high-resolution images of of mine boundaries for curve evolution, which was then 
used to identify mine areas in other regions. All of these attempts show the powerful capability of 
remote sensing in mapping mining activities, however, in contrast, few studies have used remote 
sensing to map the extent of large regional mining areas [10-12] because of the challenges of text 
statistics, accuracy and computational effort. 

In order to solve the problems faced by remote sensing technology in detecting large scale mining 
areas using medium resolution images with insufficient accuracy and difficulty in solving data 
volume using high resolution images, this study takes the Yili River basin in Xinjiang as the study 
area, based on object-oriented technology and machine learning methods, and combines medium and 
high resolution Sentinel-2 remote sensing data to mine the Sentinel by building a library of spectral, 
texture, topographic, and geometric features The aim is to form a basic database of mines, and to 
provide data support for monitoring the ecological environment of mines. 

2. Study area overview and data sources 

2.1 Study Area Overview 
The Yili River originates in the western part of the Tianshan Mountains, flows through Yili, 

Xinjiang, China, and finally joins Lake Balkhash in Kazakhstan, which is a cross-border endorheic 
river between China and Kazakhstan with a basin area of about 15.75×105 km2 [13], of which the 
basin area in China accounts for about 1/3. The overall characteristics are four mountains 
sandwiched by three valleys and one basin, high in the east and low in the west, wide in the west and 
narrow in the east, wedge-shaped [14], and the basin is geologically complex and rich in 
mineralization conditions, with 86 kinds of minerals in 9 categories: 5 kinds of energy minerals, 16 
kinds of nonferrous metal minerals, 4 kinds of ferrous metal minerals, 13 kinds of rare earth minerals, 
and 4 kinds of nonmetallic minerals. 13 kinds, 4 kinds of non-metallic ores, 10 kinds of chemical 
raw material ores, 3 kinds of special material ores, 29 kinds of building material ores, etc. It contains 
dolomite, beryllium and potassium feldspar, which have the highest reserves in China, and important 
resources coal, oil and gold [15] The study area is outlined in Figure 1. 

 
Fig.1 Study Area Overview 

2.2 Data source 
Sentinel Satellite Data. The Sentinel-2A (S2A) satellite, successfully launched on June 23, 2015, 

is the second satellite in the Copernicus program and the first satellite of the spectral imaging 
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mission with high spatial resolution and multispectral features, with spatial resolution up to 10 m. In 
this study, the S2A data were selected for imaging between June and November 2019. In this study, 
the S2A data were selected to be imaged from June to November 2019, with less than 5% of clouds. 

Terrain Data SRTM. SRTM is made by NASA and NIMA joint measurement processing, and 
SRTM1 of 30m is selected for this study to obtain topographic features. 

Auxiliary Data. The auxiliary data contains the mineral rights data of the Yili River basin, which 
are outlined by visual interpretation methods as training samples and test samples, where the 
training samples are used to build the model and the test samples are used for result comparison. 

2.3 Data pre-processing 
Sentinel-2 LIC data are geometrically refined orthophotos. To obtain atmospheric bottom 

reflectance data (L2A level) then atmospheric correction is required using the atmospheric correction 
module provided by Sentinel 2A. To enhance the comparative information between the original and 
post-mining mine surface, a set of auxiliary variables are generated in addition to the original bands 
of Sentinel data, including NDVI, NDWI, elevation, and slope. 

3. Research Methodology 

3.1 Image Segmentation 
The advantage of object-oriented over image-oriented classification is that the basic processing 

unit is the object, which can reduce pretzel noise and improve classification accuracy. Image 
segmentation is the key step of object-oriented classification, and the segmentation method often 
uses multi-scale segmentation, and the optimal segmentation scale is determined using the multi-
band image scale parameter estimation tool (ESP2) [16], and considering that the method requires 
several iterations when dealing with large regions, it slices and selects the relatively feature-rich 
areas to use ESP2 (Table 1), so as to improve the computational efficiency and reduce the 
computational cost. 

Tab.1 Segmentation scale parameter table 

Parameter Numerical value 
Shape 0.1 

Compactness 0.5 
Starting segmentation scale 10 

3.2 Feature Constructio 
The extracted features in this study (Table 2) contain spectral features: band means of R, G, B, 

NIR, NDVI, NDWI, as well as brightness and maximum difference; topographic features: elevation, 
slope; texture features: generated using the Gray Level Co-generation Matrix [17] (GLCM); and 
geometric features: generated by Cognition calculations. 

Tab.2 Classification of detection features in mining area 

Feature Category Feature Name Abbreviations Number 

Spectral 
characteristics 

Band average R; G; B; NIR; NDVI; NDWI 6 
Brightness Brightness 1 

Maximum difference MaxDiff 1 
Terrain 

characteristics 
Elevation Elevation 1 

Slope Slope 1 

Texture features 

Homogeneity Homogeneity 5 
Dissimilarity Dissimilarity 5 

Entropy Entropy 5 
Correlation Correlation 5 

Contrast degree Contrast 5 
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Second order angular moment Angular second moment 5 
Mean value Mean 5 

Standard deviation Standard deviation 5 

Geometric 
features 

Shape index Shape index (SI) 1 
Aspect Ratio Length-width (LW) 1 
Roundness Roundness 1 
Tightness Compactness 1 

Area Area 1 
Length Length 1 

Equations for luminance and maximum difference: 
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Where: n: band, C: band eigenvalue. 

3.3 Random Forest Classifier 
Random Forest [18] is an integrated learning classifier that can run on large datasets and is easy to 

use. First, bootstrap is used to have put-back extraction to form a subset of samples, and the rest 
become OOB samples, which are used to evaluate the generalization ability of the method; then 
CART is used to construct decision trees, after which m features and corresponding The forest is 
constructed by using CART, and after that, m features and corresponding amount of information are 
obtained at each node in it to construct the forest; finally, the classification results of each decision 
tree are integrated (simple voting method). 

In this paper, the random forest parameters [19] are optimized: (1) Number of Sub Decision Tree 
(NST); (2) Maximum number of features allowed to be used in a single decision tree (Max Features, 
MF); (3) Minimum Sample Leaf size (Min Sample Leaf, MSL); (4) Minimum number of features 
allowed to be used in each division according to the attributes Minimum number of samples per 
division when dividing nodes (Min Samples Split, MSS); (5) Criterion supported by the decision tree 
(Criterion); (6) Whether to calculate out-of-bag error rate (OOB Score). 

The accuracy comparison of the classification results is done by calculating the area of the 
overlapping area between the extracted range and the true range, and when the overlapping area is 
greater than 70%, the area is marked as correct, using the confusion matrix and the Kappa coefficient 
[20] (Table 3). 

Tab.3 confusion matrix and the Kappa coefficient 

Indicators male type 

Accuracy rate(ACC)  TP TNAccuracy
TP TN FP FN

+
=

+ + +
 

Precision rate(PPV) 
TPPrecision

TP FP
=

+
 

Sensitivity/Recall Rate(TPR)   Sensitivity /  Recall TP
TP FN

=
+

 

F-value 2PRF
P R

=
+

 

Kappa Coefficient 0 Kappa 
1

e

e

P P
P
−

=
−
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4. Results and Analysis 

4.1 Distribution of mining area 
The distribution of mining areas extracted by the above method is shown in Figure 2 (the 

boundaries of mining areas are bolded to show obvious), most of the mining areas are close to the 
Yili River and its tributaries, and in the flat land in the northwest of the basin (Figure a), there are 
mining areas with large areas, while the eastern part of the basin as well as the southwest are 
distributed with small and dense mining sites (Figures b and c); as can be seen from Table 4, the 
object-oriented random forest performs well with an overall accuracy of 93.03%. In order to assess 
the accuracy of the results at a finer scale, nine sub-regions were randomly selected to observe the 
degree of overlap between the actual mine area and the detected mine boundary by overlaying 
Google HD images. (1) Google images are not used in segmentation, so the spatial extent of the 
mines does not exactly match; (2) for small mines, due to the relatively insignificant feature changes, 
the boundaries are easily detected. However, the algorithm can generally distinguish the mine area 
from other features, and the classification results obtained can better capture the shape of the mine 
area, and can more accurately detect the location of the mine area, including the accumulation area 
and excavation area. 
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Fig.2  Overall distribution and local display of the mining areas 

Tab.4 Verification table of precision of mining area detection 

 
Forecast classification 

Non-mine mining area Mining area 

Actual 
classification 

Non-mine mining area 872 35 
Mining area 53 303 

Accuracy rate(ACC) 93.03% 
Precision rate(PPV) 89.64% 

Sensitivity/Recall Rate(TPR) 85.11% 
F-value 87.31% 

4.2 Quantitative characteristics of mining area 
According to statistics, there are 395 mining areas in the Yili River basin, with a total area of 

143.220 km2 and an average area of 0.363km2. According to the area occupied by mining areas, 
they are divided into four classes (Figure 3, Table 5): the largest number of mining areas (190) are in 
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the area of 0-0.5 km2, accounting for 48.1% of the overall number of mining areas, the smallest 
number (10) are >2.0 km2, accounting for only 2.5% In terms of area, the largest proportion is still 
0.1-0.5 km2, amounting to 31.2%, with an average area of 0.235 km2, and the smallest proportion is 
<0.1 km2, with only 5.2%, with an average area of 0.056 km2. In summary, the distribution of 
mining areas in the basin is characterized by the majority of small and medium-sized mining areas 
and the random distribution of large mining areas. 

 
Fig.3 Comparison maps of mining numbers and areas 

Tab.5 Statistical table of the number of mining areas 

 The number of 
mining area 

Number 
share 

Total 
area /km2 

Area 
share 

Average 
area/km2 

< 0.1 km2 133 0.337 7.491 0.052 0.056 
0.1 – 0.5 km2 190 0.481 0.116 0.312 0.025 
0.5 – 1.0 km2 46 0.116 30.635 0.214 0.666 
1.0 -2.0 km2 16 0.041 19.420 0.136 1.214 

> 2.0 km2 10 0.025 40.986 0.286 4.099 
In this paper, according to the characteristics of mineral resources in mining areas and their uses, 

they are divided into metal mining areas, non-metal mining areas and coal mining areas (energy 
mining areas). From Figure 4, Table 6, it can be seen that most of the mining areas in the Yili River 
basin belong to non-metallic mining areas, accounting for 82.03%, with a total mining area of 57.31 
km2, which is located in the second, with an average area of 0.177 km2, indicating that the non-
metallic mining areas in the mining areas of the Yili River basin are small in area but large in 
number and prone to a large number of small private industrial enterprises, for metal and coal mining 
areas, a total of 71, accounting for 17.97%, the total mining area accounts for 59.98%, the average 
area in 0.883 km2 and 1.776 km2. 

 
Fig.4 Comprehensive comparison diagrams of different types of mining areas 
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Tab.6 Statistical table of different types of mining areas 

 Total area 
/km2 

Average 
area /km2 

Percentage of 
area Quantity/pc Quantity 

share 
Non-metallic 
mining area 57.31 0.177 40.02% 324 82.03% 

Metal mining area 39.75 0.883 27.75% 45 11.39% 
Coal mining area 46.17 1.176 32.23% 26 6.58% 

4.3 Spatial characteristics of the mine site 
4.3.1 Spatial aggregation characteristics. 
The overall distribution of mining areas in the Yili River basin is uneven, gradually decreasing 

from west to east (Figure 5), with the Yili River as the centerline, and a decreasing trend from the 
middle to both sides, where the densely distributed areas are in the middle and lower reaches of the 
Yili River, including the southeast area of Huocheng County, Yining City, the southwest area of 
Yining County and the north area of Chabchal County; the downstream area of the Kashgar River, 
mainly the southwest area of Nilek County; the Turks River downstream, including the northern part 
of Turks County and the northwestern part of Gongliu County. In addition, there are two obvious 
clusters in the distribution of mining areas in the Yili River basin: the junction of "Huocheng County 
- Yining City - Yining County - Chabchal County" and the junction of "Nilek County - Gongliu 
County". mining areas, and Huocheng County has the largest number of metal mining areas. In 
summary, the spatial distribution of mining areas in the Yili River basin is "group": uneven overall 
distribution, high concentration in the local area, horizontal continuity and vertical succession. 

 
Fig.5 Distribution of kernel density in Yili River basin 

Tab.7 Distribution of mining areas in counties of Yili River 

 Number of 
mining area 

Number of 
metal mining 

sites 

Number of 
non-metallic 

mine sites 

Number of 
coal mining 

areas 
Yining City 14 4 8 2 

Huocheng County 39 8 25 6 
Yining County 34 6 23 5 

Chabchal County 74 6 61 7 
Nilek County 62 5 53 4 

Xinyuan County 43 4 39 0 
Gongliu County 51 5 45 1 
Turks County 28 4 24 0 

Zhaosu County 50 3 46 1 
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4.3.2 Elevation and slope characteristics. 
The average elevation of mine site distribution is 1177.67m and the average slope is 6.22°, which 

is lower than the average elevation of 2055.81m and the average slope of 14.74° in the Yili River 
basin (Figure 6). Among them, 78.9% of the mining sites are located in the altitude range of 0-
1572m, while 90.6% of the mining sites are located in the slope range of 0-15°, i.e. the distribution 
of mining sites in the Yili River Basin tends to gather in the middle and low altitude gentle terrain in 
general. Among them, the average elevation of metal mining areas is 1188.42m and the average 
slope is 6.41°, while the average elevation of coal mining areas is 1210.83m and the average slope is 
located at 6.58°, which is 10.75m, 33.16m and 0.19°, 0.36° higher than the average. The results show 
that the overall elevation of the distribution of metal mining areas and coal mining areas is higher 
and the slope is larger, so for these industrial enterprises it is more important to prevent and control 
the arrival of natural disasters such as landslides and mudslides. 

 
Fig.6 Distribution of mining areas at different elevations and slopes in the Yili River Basin 

4.3.3 Distance of the mine site from the river. 
The overall spatial distribution of mining areas in Yili River basin is greatly affected by 

topography, resulting in their tendency to cluster in the flat terrain around rivers and mountains. It 
can be seen from FIG. 7 and Table 8 that: The distance from the mining area to the river is mostly 
8646.83 to 14090.78m, with an average distance of 9364.69m. The distance from the non-metallic 
mining area to the river is 9716.17m, the distance from the metal mining area to the river is 
7523.01m, and the distance from the coal mining area to the river is 8185.75m. The distance from 
the metal mining area to the river is the closest. Because of its waste polluting mine production life is 
also the most serious of the three types of mining area, so once the waste into the river, the river have 
a huge pollution is beyond doubt, so in the daily production management, mine head should not only 
strictly on slag processing, and related departments should also focus on mining engineering safety, 
In order to prevent the occurrence of secondary geological disasters, mining area more serious river 
ecological pollution. 

239



 
Fig.7 Diagram of distance distribution between mining area and river 

Tab.8 Distance between different types of mining areas and rivers 

 Non-metallic 
mining area 

Metal mining 
area 

Coal mining 
area 

The overall 
mining area 

Mean distance from the 
river(m) 9716.17 7523.01 8185.75 9364.69 

5. Discussion 

5.1 Influence of sample point and segmentation scale on prospecting accuracy in mining area 
In mining area identification, the quantity and proportion of sample bank will affect the RF 

simulation results. In this study, considering the sample size and proportion, four sample schemes as 
shown in Table 9 were established, and OOB error [21] was used as an evaluation index to illustrate 
the impact of samples on the model. Specifically, the difference between sample ⅰ and sample ⅱ lies 
in the difference of the total amount, and the difference between sample ⅱ and sample ⅲ lies in the 
difference of the number of non-mining areas. The OOB errors obtained are 13.12% and 9.03%, 
respectively. 8.71%, it can be seen that the prediction accuracy of the model increases with the 
increase of the number of sample points, but compared with sample ⅳ and sample ⅱ, the OOB error 
increases. The difference between them lies in the difference of sample proportion. Therefore, the 
proportion of mining and non-mining samples should also be considered when setting up the sample 
library [22]. Therefore, to sum up, sample ⅲ is finally selected as its sample library. Therefore, in the 
future work, we can choose to adjust the distribution of sample points in the training set to further 
improve the accuracy of mining detection results. 

Tab.9 Different sample point combinations and OOB errors 

sample Number of 
mining sites 

Number of non-
mining mining sites total OOB Error 

(%) 
sampleⅠ 226 450 676 13.12 
sampleⅡ 522 1178 1700 9.03 
sampleⅢ 522 1478 2000 8.71 
sampleⅣ 616 1109 1725 11.50 

Under the condition that the shape and compactiity parameters were consistent, the segmentation 
scale parameter [23] was changed, and three different schemes were set: 50, 100 and 300. The total 
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amount of corresponding objects was 82.29×105, 22.21×105 and 2.49×105, and the OOB error was 
9.46%, 9.46% and 9.62% (Table 10). The number of objects generated by scale 50 is about four 
times that of scale 100, but the OOB errors of scale 50 and scale 100 are almost the same, so the 
relatively appropriate scale parameter 100 is chosen. 

Tab.10 Parameter list of different segmentation scales 

Segmentation 
scale 

Total number of 
segmented objects Shape Compactness OOB 

50 82.29 x 105 0.1 0.5 9.46% 
100 22.21 x 105 0.1 0.5 9.46% 
300 2.49 x 105 0.1 0.5 9.62% 

5.2 Random forest parameter optimization 
The same sample base was applied to linear regression (LR), support vector machine (SVM), 

decision tree (DT) and random forest (RF), and the ROC-AUC curve was used to characterize the 
mining detection performance of the model under the premise that the initial parameters were not 
changed (FIG. 8). The results showed that: Decision tree has the worst simulation ability and the 
lowest accuracy (AUC =0.85), while linear regression and random forest have similar performance, 
and combined with the stability and computational efficiency of the model, random forest model 
performs better. 

 
Fig.8 ROC-AUC curves of different models 

In the optimization of random forest model parameters, grid search cross validation (k=10) is 
usually used to perform repeated combinations of different parameter values. The results in Figure 
A-C show that the MF parameter performs well when the number of features is base 2 (Log2), 
indicating that the construction of sub-decision tree with more sparse features is conducive to 
random forest classification. The smaller the MSL value and MSS value (MSL=10, MSS=60), the 
higher the accuracy of random forest. When the NST value is kept constant, the higher the MF value 
is (MF=5), the higher the random forest accuracy is. When NST is in the range of 1-10, the accuracy 
of the classification model fluctuates. When the value is in the range of 10-100, the error rate of 
random forest model decreases faster, and the error rate of random forest model decreases faster in 
NST&gt; After 100, the accuracy of the model does not improve much, and after 1000, the accuracy 
tends to be stable. Therefore, to ensure the credibility of the model prediction, 1000 is chosen as the 
NST value. For the criteria supported by the decision tree (FIG. 4D), the entropy approach is more 
accurate than the Gini coefficient approach. 
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Fig.9 Random forest parameters optimization 

5.3 Importance assessment of characteristic variables 
Random forest uses OOB error to calculate the importance of characteristic variables, which is 

represented by importance [23,24]: 
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Where te  is the out-of-pocket error of out-of-pocket data estimation, j
te  is the new out-of-pocket 

error after randomly changing the value of the jth characteristic variable jX of out-of-pocket 
data.The greater the out-of-pocket error caused by the variable, the lower the accuracy, and the 
greater MDA[25], indicating that the jX  variable is more important.In this paper, the method of 
cross-validation is still adopted, and the MDA value is calculated 20 times repeatedly. Finally, the 
results are arranged from the largest to the smallest, and the top 11 feature variables are selected 
(Table 11). In the table it can be seen that the mining area and the terrain, has greater correlation 
spectrum and texture feature, including the factors associated with topographic features were 
selected, and in all eight spectral characteristics has six sorts, in contrast, texture features only the 
standard deviation of the mining area to identify related, therefore, in the large-scale mining area 
detection, spectrum and terrain characteristics plays an important role, Texture and geometric 
features are discarded due to low correlation. 

Tab.11 Features importance 

Characteristics of the type Characteristics of the name MDA 
Spectral characteristics Max_diff 56.011 

Terrain features Elevation 47.135 
Spectral characteristics NDVI 36.280 
Spectral characteristics NDWI 31.793 
Spectral characteristics Blue 26.752 
Spectral characteristics NIR 24.931 

Terrain features Slope 24.563 
Spectral characteristics Brightness 24.146 

Terrain features GLCM.StdDev.90° 20.153 
Terrain features GLCM.StdDev.all.dir 17.492 
Terrain features GLCM.StdDev.45° 14.328 

6. Conclusion 
Mineral resources are the effective support of human life, but the economic development of 

mining areas is easy to conflict with environmental protection. Therefore, it is of great significance 
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to explore an effective and accurate algorithm to identify the location of large-scale mining areas, 
which is important for the formation of mine database and the investigation of illegal mining 
activities in mining areas. In this paper, the Yili River basin in Xinjiang is taken as the study area, 
and 60 spectral, topographic, texture and geometric classification features are constructed based on 
sentinel and topographic data. Then, the distribution of mining areas in the basin is obtained by 
object-oriented random forest algorithm. The results show that: in the object-oriented random forest 
algorithm, the "salt and pepper effect" can be weakened, and the mining area has a large correlation 
with the spectrum and topography, and only the standard deviation feature is related to the texture 
feature. There are 395 mining sites in the Yili River Basin, with a total area of 143.220km2, which 
are concentrated in the middle and low altitudes and close to the river channel, reflecting the "group 
nature" in space. In terms of the number of mining areas, the area of 0-0.5km2 is the majority, and 
non-metallic mining areas are the most abundant, and metal mining areas are the closest to the river 
channel. In the future research work, the algorithm can be further optimized to extract the mining 
areas of the country and form a richer mine database. 
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